5,667 research outputs found

    A cryptographic airbag for metadata: protecting business records against unlimited search and seizure

    Full text link
    Governments around the world require that electronic service providers, including telecoms, ISP’s, and even online services like Twitter and Facebook, must provide law enforcement agencies (LEA’s) with broad access to so-called “business records” including communications metadata. Metadata is data about data; it does not include the contents of the users’ communications, but it does typically show who each user communicated with, and at what times, and for how long. Metadata is actually surprisingly powerful, especially in a time when more and more messages are being encrypted from “endto- end.” In this paper, we present a new approach for protecting communications metadata and other business records against unwarranted, bulk seizure. Our approach is designed from the start to be robust against this new class of political and legal attack. To achieve this, we borrow the recent notion of cryptographic crumple zones [31], i.e. encryption that can be broken, but only at a substantial monetary cost. We propose that a service provider who wishes to protect their users’ privacy should encrypt each business record with its own unique, crumpled, symmetric key. Then, a law enforcement agency who compels disclosure of the records learns only ciphertext until they expend the necessary resources to recover keys for the records of interest. We show how this approach can be easily applied to protect metadata in the form of network flow records. We describe how a service provider might select the work factor of the crumpling algorithm to allow legitimate investigations while preventing the use of metadata for mass surveillance.Published versio

    Early Detection and Analysis of Leakage Abuse Vulnerabilities

    Get PDF
    In order to be useful in the real world, efficient cryptographic constructions often reveal, or ``leak,\u27\u27 more information about their plaintext than one might desire. Up until now, the approach for addressing leakage when proposing a new cryptographic construction has focused entirely on qualifying exactly what information is leaked. Unfortunately there has been no way to predict what the real-world impact of that leakage will be. In this paper, we argue in favor of an analytical approach for quantifying the vulnerability of leaky cryptographic constructions against attacks that use leakage to recover the plaintext or other sensitive information. In contrast to the previous empirical and ad-hoc approach for identifying and assessing such vulnerabilities, analytical techniques can be integrated much earlier in the design lifecycle of a new construction, and the results of the analysis apply much more broadly across many different kinds of data. We applied the proposed framework to evaluate the leakage profiles of five recent constructions for deterministic and order-revealing encryption. Our analysis discovered powerful attacks against every construction that we analyzed, and with only one possible exception, the attack allows the adversary to recover virtually any plaintext with only an exponentially small probability of error. We hope that these results, together with the proposed analytical framework, will help spur the development of new efficient constructions with improved leakage profiles that meaningfully limit the power of leakage abuse attacks in the real world

    NAIF Toolkit - Extended

    Get PDF
    The Navigation Ancillary Infor ma tion Facility (NAIF) at JPL, acting under the direction of NASA s Office of Space Science, has built a data system named SPICE (Spacecraft Planet Instrument Cmatrix Events) to assist scientists in planning and interpreting scientific observations (see figure). SPICE provides geometric and some other ancillary information needed to recover the full value of science instrument data, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. This data system is used to produce space mission observation geometry data sets known as SPICE kernels. It is also used to read SPICE kernels and to compute derived quantities such as positions, orientations, lighting angles, etc. The SPICE toolkit consists of a subroutine/ function library, executable programs (both large applications and simple utilities that focus on kernel management), and simple examples of using SPICE toolkit subroutines. This software is very accurate, thoroughly tested, and portable to all computers. It is extremely stable and reusable on all missions. Since the previous version, three significant capabilities have been added: Interactive Data Language (IDL) interface, MATLAB interface, and a geometric event finder subsystem

    The Strength of Weak Randomization: Efficiently Searchable Encryption with Minimal Leakage

    Get PDF
    Efficiently searchable and easily deployable encryption schemes enable an untrusted, legacy service such as a relational database engine to perform searches over encrypted data. The ease with which such schemes can be deployed on top of existing services makes them especially appealing in operational environments where encryption is needed but it is not feasible to replace large infrastructure components like databases or document management systems. Unfortunately all previously known approaches for efficiently searchable encryption are vulnerable to inference attacks where an adversary can use knowledge of the distribution of the data to recover the plaintext with high probability. In this paper, we present the first efficiently searchable, easily deployable database encryption scheme that is provably secure against inference attacks even when used with real, low-entropy data. Ours is also the only efficiently searchable construction that provides any provable security for protecting multiple related attributes (columns) in the same database. Using this ESE construction as a building block, we give an efficient construction for performing range queries over encrypted data. We implemented our constructions in Haskell and used them to query encrypted databases of up to 10 million records. In experiments with a local Postgres database and with a Google Cloud Platform database, the response time for our encrypted queries is not excessively slower than for plaintext queries. With the use of parallel query processing, our encrypted queries can achieve similar and in some cases superior performance to queries on the plaintext

    Bioanalytical Assay of Antimicrobial Polymers Binding to Bacterial Cells

    Full text link
    Branched polyethylenimine (BPEI) has an antimicrobial effect on bacteria. The killing mechanism of BPEI centers on its cationic properties. The mechanism of action against Gram-positive bacteria is less understood but recent reports erroneously suggest that membrane depolarization occurs. To the contrary, data from our laboratory suggests that BPEI binds to the anionic sites provided by the biopolymer wall teichoic acid (WTA). To test the validity of this hypothesis, we measure the amount BPEI binding to whole, intact, bacterial cells of Bacillus subtilis. Comparative measurements are made with Bacillus subtilis bacteria that contain WTA and Bacillus subtilis genetic mutants that lack WTA. Using equilibrium dialysis, Bacillus subtilis bacteria were exposed to different solution concentrations of BPEI. Removal of small aliquots from solution and subsequent assay with the ninhydrin test were used to measure the amount of BPEI remaining in solution and the amount of BPEI bound to the bacterial cell walls. These data were used to obtain the amount of bound vs. unbound BPEI and determine the equilibrium constant. These data influence the understanding of BPEI antimicrobial properties and impacts the development of antibiotics to treat human disease

    Approximate Thumbnail Preserving Encryption

    Get PDF
    Thumbnail preserving encryption (TPE) was suggested by Wright et al. as a way to balance privacy and usability for online image sharing. The idea is to encrypt a plaintext image into a ciphertext image that has roughly the same thumbnail as well as retaining the original image format. At the same time, TPE allows users to take advantage of much of the functionality of online photo management tools, while still providing some level of privacy against the service provider. In this work we present three new approximate TPE encryption schemes. In our schemes, ciphertexts and plaintexts have perceptually similar, but not identical, thumbnails. Our constructions are the first TPE schemes designed to work well with JPEG compression. In addition, we show that they also have provable security guarantees that characterize precisely what information about the plaintext is leaked by the ciphertext image. We empirically evaluate our schemes according to the similarity of plaintext and ciphertext thumbnails, increase in file size under JPEG compression, preservation of perceptual image hashes, among other aspects. We also show how approximate TPE can be an effective tool to thwart inference attacks by machine-learning image classifiers, which have shown to be effective against other image obfuscation techniques

    Anti-HIV Activity in Cervical-Vaginal Secretions from HIV-Positive and -Negative Women Correlate with Innate Antimicrobial Levels and IgG Antibodies

    Get PDF
    We investigated the impact of antimicrobials in cervicovaginal lavage (CVL) from HIV(+) and HIV(−) women on target cell infection with HIV. Since female reproductive tract (FRT) secretions contain a spectrum of antimicrobials, we hypothesized that CVL from healthy HIV(+) and (−) women inhibit HIV infection. indicated that each was present in CVL from HIV(+) and HIV(−) women. HBD2 and MIP3α correlated with anti-HIV activity as did anti-gp160 HIV IgG antibodies in CVL from HIV(+) women.These findings indicate that CVL from healthy HIV(+) and HIV(−) women contain innate and adaptive defense mechanisms that inhibit HIV infection. Our data suggest that innate endogenous antimicrobials and HIV-specific IgG in the FRT can act in concert to contribute toward the anti-HIV activity of the CVL and may play a role in inhibition of HIV transmission to women

    Anti-HIV Activity in Cervical-Vaginal Secretions from HIV-Positive and -Negative Women Correlate with Innate Antimicrobial Levels and IgG Antibodies

    Get PDF
    Background: We investigated the impact of antimicrobials in cervicovaginal lavage (CVL) from HIV(+) and HIV(2) women on target cell infection with HIV. Since female reproductive tract (FRT) secretions contain a spectrum of antimicrobials, we hypothesized that CVL from healthy HIV(+) and (2) women inhibit HIV infection. Methodology/Principal Findings: CVL from 32 HIV(+) healthy women with high CD4 counts and 15 healthy HIV(2) women were collected by gently washing the cervicovaginal area with 10 ml of sterile normal saline. Following centrifugation, anti- HIV activity in CVL was determined by incubating CVL with HIV prior to addition to TZM-bl cells. Antimicrobials and anti- gp160 HIV IgG antibodies were measured by ELISA. When CXCR4 and CCR5 tropic HIV-1 were incubated with CVL from HIV(+) women prior to addition to TZM-bl cells, anti-HIV activity in CVL ranged from none to 100% inhibition depending on the viral strains used. CVL from HIV(2) controls showed comparable anti-HIV activity. Analysis of CH077.c (clone of an R5- tropic, mucosally-transmitted founder virus) viral inhibition by CVL was comparable to laboratory strains. Measurement of CVL for antimicrobials HBD2, trappin-2/elafin, SLPI and MIP3a indicated that each was present in CVL from HIV(+) and HIV(2) women. HBD2 and MIP3a correlated with anti-HIV activity as did anti-gp160 HIV IgG antibodies in CVL from HIV(+) women. Conclusions/Significance: These findings indicate that CVL from healthy HIV(+) and HIV(2) women contain innate and adaptive defense mechanisms that inhibit HIV infection. Our data suggest that innate endogenous antimicrobials and HIV- specific IgG in the FRT can act in concert to contribute toward the anti-HIV activity of the CVL and may play a role in inhibition of HIV transmission to women

    Measurement of one-particle correlations and momentum distributions for trapped 1D gases

    Full text link
    van Hove's theory of scattering of probe particles by a macroscopic target is generalized so as to relate the differential cross section for atomic ejection via stimulated Raman transitions to one-particle momentum-time correlations and momentum distributions of 1D trapped gases. This method is well suited to probing the longitudinal momentum distributions of 1D gases in situ, and examples are given for bosonic and fermionic atoms.Comment: 4 pages, 2 .eps figure
    corecore